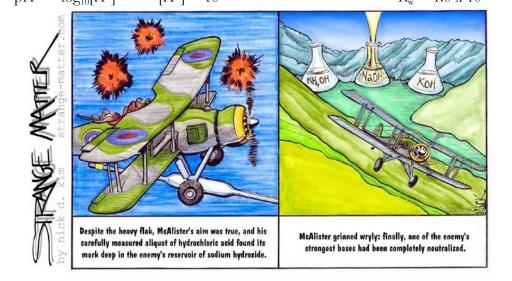
Chem 1121 Spring 2012 Exam 5A

Name:		<u> </u>		
Multiple Choice. Select	the best answer, and	d record your respo	nse on a scantron	sheet.
Q1. [4 pts] Which of a) $p \propto V$	the following ed b) $V \propto T$	1 ,	_	e) <i>p</i> ∝ 1/ <i>T</i>
Q2. [4 pts] The parts a) vapor pres d) boiling po	ssure	substance above b) barometric e) osmotic pro	pressure	own as: c) ideal pressure
Q3. [4 pts] A reaction a) dynamic	n that absorbs h b) catalyzed		d) endotherm	ic e) non-ideal
Q4. [4 pts] A reaction a) fast	n with a high act b) slow	tivation energy v c) exothermic		
b) the activace) the rate of d) the rate of	a you say about a ules are no longe tion energy has b the forward rea f the forward rea er's principle no	er reacting been reduced to ction is zero ction equals the	zero	erse reaction
Q6. [4 pts] What is t a) proton do d) releases C		b) proton acc	eptor	c) releases H ⁺ in solution
Q7. [4 pts] Which of a) HC ₂ H ₂ O	the following m b) H ₂ SO ₄	-		
Q8. [4 pts] An aqueo a) acidic	ous solution at 25 b) neutral	5 °C with [H ⁺] = c) basic		e) not enough information
Q9. [4 pts] What is t a) 5.00	he pOH of a solb b) 6.00	ution if [H ⁺] = c) 7.00		e) 9.00
Q10. [4 pts] Which is a) alpha	1 \ 1			tively charged plate? e) epsilon
Q11. [4 pts] Cobalt- a) $_{29}^{60}$ Cu	60 (⁶⁰ ₂₇ Co)underg b) ⁶⁴ ₂₉ Cu	goes beta decay. c) $^{56}_{25}$ Mn	What is the ide d) $^{61}_{27}\text{Co}$	ntity of the daughter atom formed: e) $^{60}_{28}\mathrm{Ni}$

Q12. [4 pts] Hydr remain after twen	_	life of approxir	mately ten years	. What percent of a sample of hydrogen-3 w	ill
	b) 50 %	c) 25 %	d) 10 %	e) 0 %	
Show all work to receive answers using the corre			•	hod for all conversions. Be sure to show all units and writ	te you
Q13. [10 pts] Wha	at volume will 23.	4 g of NH ₃ (g) o	occupy at a pres	sure of 1.20 atm and a temperature of -5 °C	.5
Q14. [10 pts] Con	sider the followin	ng reaction at ec	quilibrium:		
	$2CH_4(g) + 2$	2NO(g)	= 2CO(g) + 2N	$IH_3(g) + H_2(g) + heat$	
W	hich direction (let	ft, right, or no c	change) will the	equilibrium shift when:	
a)	The amount of N	IO(g) is decreas	sed:		
b)	The pressure is in	ncreased:			
c)	The amount of H	I ₂ (g) is decrease	ed:		
d)	The temperature	is increased:			
e)	The amount of C	CO(g) is increase	ed:		


F	alculate the pH of the following solutions: Be sure to show ALL work! Answers that do not show work will not receive any credit. (a) 0.25 M HNO ₃ (aq)
ł	o) 0.35 M Mg(OH) ₂ (aq)
C	e) $0.25~\mathrm{M~HC_2H_3O_2(aq)}$, a weak acid that undergoes $3.0~\%$ dissociation.

Q16. [10 pts] Write the balanced nuclear equation for the alpha-decay of Polonium-210. (Polonium is element number 84, Po)

Q17. [5 pts] Carbonic acid, H ₂ CO ₃ is a weak diprotic acid. What does diprotic mean? Write out chemical equations that show the dissociation reactions of carbonic acid in water.
Q18. [7 pts] What does a buffer do? How is it made?
BONUS Question:
Explain why liquids boil at a lower temperature when atmospheric pressure is reduced?

Useful Information

1 atm = 760 mmHg = 760 torr = 101,325 Pa
$$P_1V_1 = P_2V_2$$
 $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ $T(K) = t(^{\circ}C) + 273$ $pV = nRT$ $R = 0.08206 \text{ L atm/mol ·K}$ $T(K) = t(^{\circ}C) + 273$ $P(K) = t(^{\circ}C)$

Periodic Table

1																	18
IA 1																	VIIIA 2
H	2											13	14	15	16	17	He
1.01	ΠA	\$\hat{\psi}										IIIA	IVA	VA	VIA	VIIA	4.00
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12					_						13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69,72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192,2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)							

1	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157,3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
٨	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)