Exam 3 Chem 1121 Fall 2009

Name:_____

Show all work to receive credit.

Q1. [10 pts.] Balance the following equations using the lowest whole-number coefficients:

a) The oxidation of ethyl alcohol to acetic acid:

 $\underline{C_2H_6O(l)} + \underline{O_2(g)} \longrightarrow \underline{C_2H_6O_2(l)}$

b) The combustion of butane:

$$\underline{C}_4H_{10}(g) + \underline{O}_2(g) \longrightarrow \underline{CO}_2(g) + \underline{H}_2O(l)$$

c) The anaerobic fermentation of sugar:

$$_C_6H_{12}O_6(s) \longrightarrow _C_2H_6O(l) + _CO_2(g)$$

Q2. [9 pts.] Convert the following masses to moles. Show ALL work! a) 34.5 g urea, N₂H₄CO

b) 24.4 g vitamin C, $C_6H_8O_6$

Q3. [5 pts.] How many moles of formaldehyde are in 24.5 mL of a solution whose molar concentration is 0.350 M? Show all work.

Q4. [8 pts.] A sample of gas with a pressure of 452 mmHg and a volume of 3.2 L is compressed until its new volume is 0.89 L. What will its pressure become? (Assume the temperature does not change.)

Q5. [8 pts.] A cylinder of hairspray with a pressure of 1.01 atm at a temperature of 15 °C is thrown onto a fire whose temperature is 581 °C. What will the pressure of the hairspray change to?

Q6. Urea breaks down via the following unbalanced chemical equation:

$$N_2H_4CO + H_2O \longrightarrow NH_3 + CO_2$$

a) [4 pts.] Balance the chemical equation using the lowest set of whole number coefficients.

b) [4 pts.] How many moles of NH_3 are formed from the complete reaction of 3.4 mol urea, N_2H_4CO ? Show all work. Be sure to use the conversion-factor (factor-label) method.

c) [8 pts.] How many grams of NH_3 can be formed from the complete break-down of 15.1 g urea, N_2H_4CO ? Show all work. Be sure to use the conversion-factor (factor-label) method.

Q7. [8 pts.] Define the following terms: a) Saturated solution

b) Unsaturated solution

c) Supersaturated solution

d) Aqueous solution

Q8. [4 pts.] How does adding an ionic compound, such as ammonium nitrate, NH_4NO_3 , to water affect its boiling point and freezing point?

a) Effect upon boiling point

b) Effect upon freezing point

Q9. [10 pts.] Using the ideal gas equation, calculate the pressure that 1.4 g of CH_4 will exert at a temperature of 0 °C and a volume of 1.03 L.

Q10. [1 pt.] What will happen if a red blood cell is added to a *hypotonic* solution?[4 pts.] Explain why.

Q11. [9 pts.] What are the three steps involved in the dissolving of an ionic compound, such as NaCl? Draw pictures to illustrate.

ii)

iii)

i)

Q12. (i) [2 pts.] What is meant by the term: vapor pressure?

ii) [6 pts.] Sketch a graph of vapor pressure vs. temperature. Label your axes. Explain how you can use your graph to determine the *normal boiling point* of the substance it represents.

BONUS QUESTION:

Ringer's solution, used in the treatment of burns and wounds, is prepared by dissolving 8.6 g NaCl, 0.3 g KCl, and 0.33g CaCl₂ in water and diluting to a volume of 1.00 L.

What is the molarity of each component?

Useful Information

 $\begin{array}{ll} 1 \mbox{ atm } = 760 \mbox{ mmHg} = 760 \mbox{ torr} = 101,325 \mbox{ Pa} \\ pV = nRT & P_1V_1 = P_2V_2 & V_1/T_1 = V_2/T_2 \\ R = 0.08206 \mbox{ L atm/mol K} \\ T(K) = t(^{\circ}C) + 273 \end{array}$

		Periodic Table of the Elements															
IA 1	IIA											IIIA	IVA	VA	VIA	VIIA	
1	I																2
H																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
																т	
		57	58	59	60	61 D ara	62	63	64	65	66	67	68	69	70		
	^	La	Ce	Pr	Na	Pm	Sm	Eu	Ga	ai	Dy	HO	Er	IM	ΥD		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	ł	
	**	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
	**	AC	in	Ра	U	мр	Pu	AM	Cm	BK	CT	ES	⊦m	Md	NO		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		