Chem 1121 Spring 2012 Exam 2A

Name:

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q1. [12 pts.] Identify the following compounds as being either IONIC (I) or MOLECULAR (M).

a) FeBr ₂	
b) NO ₂	
c) I ₃ Br ₁₀	
d) P ₄ O ₁₀	
e) NaNO ₃	
f) K ₂ S	

Q2. [16 pts.] Name the following compounds:

a) FeCl ₃	
b) NH ₄ Br	
c) N ₃ F ₈	
d) Cu(NO ₃) ₂	
e) Br ₂ O ₇	
f) Li ₃ PO ₄	
g) Ca(HCO ₃) ₂	
h) P ₄ S ₆	

Q3. [16 pts.] Write formulas for the following compounds:

a) calcium sulfate				
b) trisulfur octabromide				
c) ammonium carbonate				
d) potassium nitrite				
e) copper(II) hydroxide				
f) heptanitrogen tetroxide				
g) octaphosphorus trichloride				
h) magnesium cyanide				

Q4. [6 pts.] Give the name and the formula of the ion released by an ACID when it dissolves in water?

Q5. [12 pts.] Using the normal number of bonds that the atoms make, draw two different **structural isomers** with the formula: $C_2H_4Cl_2$. Explain what a structural isomer is part of your answer.

Q6. [20 pts.] Write out valid Lewis structures for the following substances:

a) CH₂Br₂

b) SO₃^{2–}

c) HCN

(hint: take carbon to be the central element.)

Q7. [18 pts.] Predict the geometry of the NF₃ molecule using VSEPR. Your answer should include: (1) a valid Lewis structure, (2) a sketch of the geometry *(using line, wedge, and dash notation)*,

- - (3) the name of the **molecular** geometry, and
 - (4) the approximate bond angle written out.

18 VIIIA 2 4.00 10	Ne 20.18	Ar 39.95	36 Kr 83 80	54 Xe	131.29 86	Rn (222)		
17 VIIA	F 19.00	CI 35.45	35 Br 79 90	53 I	126.9 85	At (210)		71 Lu 175.0 103 Lr (260)
16 VIA 8	0 16.00	S 32.07	34 Se 78 96	52 Te	127.6 84	Po (209)		70 Yb 173.0 102 No (259)
15 VA	N 14.01	P 30.97	33 AS 74 97	Sb	121.76 83	Bi 209		69 Tm 101 (258)
14 IVA	C C 12.01	Si 28.09	32 Ge 77 61	so Sn	118.71 82	Pb 207.2		68 Er 167.3 100 Fm (257)
13 111A	B 10.81	AI 26.98	31 Ga	49 In	114.82 81	TI 204.4		67 Ho 164.9 99 ES (252)
-		12 IIB	30 Zn 65 39	⁴⁸ Cd	112.41 80	Hg 200.6		66 Dy 162.5 98 Cf (251)
		11 IB	29 Cu 63 55	47 Ag	107.87	Au 197.0	111 Rg (272)	65 Tb 97 97 (247)
		10	28 Ni 58.69	46 Pd	106.42 78	Pt 195.1	110 Ds (271)	64 Gd 157.3 96 Cm (247)
		9 VIIIB	27 Co 58 93	45 Rh	102.91 77	Ir 192.2	109 Mt (268)	63 Eu 152.0 95 (243)
		8	26 Fe 55 85	44 Ru	101.07	Os 190.2	108 Hs (265)	62 Sm 150.4 94 Pu (244)
		7 VIIB	25 Mn 54 94	43 Tc	(98) 75	Re 186.2	107 Bh (264)	61 Pm (145) 93 93 93 (237)
		6 VIB	24 Cr 52 00	42 Mo	95.94 74	W 183.9	106 Sg (263)	60 Nd 92 U 238.0
				-			105 Db (262)	59 Pr 140.9 91 Pa (231)
		4 IVB	22 Ti 47 88	40 Zr	91.22 72	Hf 178.5	104 Rf (261)	58 Ce 90 Th 232.0
		3 IIIB	21 Sc 44 96	39 X	88.91 57	La* 138.9	89 Ac^ (227)	* <
114 114	- Be 9.01	Mg 24.31	20 Ca 40.08	Sr 38	87.62 56	Ba 137.3	88 Ra (226)	
1 AI 1 I I I I I I I I I I I I I I I I I	Li 6.94	Na 22.99	6 X 5	37 Rb	85.47 55	Cs 132.9	87 Fr (223)	

Periodic Table