Exam 3A Chem 1121 Fall 2018

D) PbCl₂

Nar	me:
Sho	w all work to receive credit.
Mult	iple Choice. [4 pts. each.] Select the <i>best</i> answer on the scantron sheet.
Q1.	What mass would 1 mol of silver weigh? A) 107.9 g B) 121.8 g C) 197.0 g D) 200.6 g
Q2.	What mass would 1 mol of NH ₄ NO ₃ weigh? A) 10.03 g B) 34.02 g C) 68.05 g D) 80.06 g
Q3.	How many moles of H ₂ O are there in 12.5 g of H ₂ O? A) 18.0 mol B) 12.5 mol C) 0.694 mol D) 0.125 mol
Q4.	Given the balanced chemical equation: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ How many moles of NH_3 will theoretically be formed from 1.50 mol N_2 ? A) 6.00 mol B) 3.00 mol C) 1.50 mol D) 0.750 mol
Q5.	Which of the following ionic compounds would be insoluble in water? A) Na ₂ SO ₄ B) KCl C) LiNO ₃

Q6.	A solution where the maximum amount of solute is dissolved in a given amount of solvent is best said to be: A) concentrated B) super-saturated C) saturated D) hypotonic
Q7.	The molar concentration of a solution formed by dissolving 0.25 mol NaCl in water such that the total volume is 500. mL is: A) 0.00050 M B) 0.0025 M C) 0.25 M D) 0.50 M
Q8.	The number of moles of CaCl ₂ contained in 3.2 L of a 0.30 M CaCl ₂ (aq) solution is: A) 0.96 mol B) 0.74 mol C) 0.56 mol D) 0.30 mol
Q9.	What volume of 0.30 M CaCl ₂ (aq) is needed to contain 0.096 mol CaCl ₂ ? A) 320 mL B) 450 mL C) 750 mL D) 960 mL
Q10.	The molarity of a solution formed by dissolving 14.0 g NaCl in water, such that the total volume is 2.0 L is: A) 0.060 M B) 0.090 M C) 0.12 M D) 0.24 M
Q11.	A solution made by dissolving 5.0 g of NaCl in 25.0 g of water would have a %(w/w) concentration of: A) 5.0% (w/w) B) 17% (w/w) C) 20.% (w/w) D) 30.% (w/w)
Q12.	Which of the following solutions will have the lowest freezing point: A) 1.00 M FeCl ₃ (aq) B) 1.00 M Cu(NO ₃) ₂ (aq) C) 1.00 M glucose (aq) D) They would all have the same freezing point

Q13.	A red blood cell placed in a hypotonic solution would tend to: A) contract or shrivel up (crenation) B) stay unchanged C) lower the boiling point of the solution D) expand and possibly explode (hemolysis)
Q14.	Which of the following is not a physical quantity associated with gases A) volume B) osmotic pressure C) temperature D) number of moles
Q15.	The device used to measure atmospheric pressure is called A) hygrometer B) barometer C) manometer D) sphygmomanometer
Short	Response. Show your work (where appropriate) to receive full credit!
Q16. [10 pts] Given the balanced chemical equation for the oxidation of glucose ($C_6H_{12}O_6$): $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$
	Hint: be sure to show all work, and you must use the conversion-factor method to receive full credit.
	a) How many moles of CO ₂ can be formed from 0.15 mol C ₆ H ₁₂ O ₆ ?
	b) How many grams of CO_2 can be formed from 25.0 g of $\mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6$?
	c) If 8.50 g of CO ₂ is actually formed in the previous step, calculate the percent yield for this

reaction.

Q17. [10 pts] Complete and balance the following chemical equations below. Be sure to balance the equations, show all state symbols, and charges as necessary:
Molecular equation: $_Ba(NO_3)_2(aq) + _Na_2SO_4(aq) \rightarrow$
Complete ionic equation:
Net-ionic equation:

Q19. [10 pts.] Using the conversion-factor method, calculate the following:
a) The number of moles of NaCl in 0.300 L of a 0.100 M NaCl(aq) solution.
b) The volume of 0.100 M NaCl(aq) solution needed to contain 0.350 mol NaCl.
c) The mass in grams of NaCl in 325 mL of a 3.50 %(w/v) solution of NaCl(aq).
BONUS Question: Who invented the first instrument to measure air pressure?

Useful Information

Periodic Table of the Elements	Periodic	Table	of the	Elements
--------------------------------	----------	-------	--------	----------

IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	т																18
1 1																	2
H																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											ΑI	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
				-	-												
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	Ī	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
	Ì	89	90	91	92	93	94	95	96	97	98	99	100	101	102	Ī	
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

TABLE 5.1	General Solubility	Guidelines for	Ionic Compounds	in Water
------------------	---------------------------	-----------------------	-----------------	----------

Soluble	Exceptions
Ammonium compounds (NH ₄ ⁺)	None
Lithium compounds (Li ⁺)	None
Sodium compounds (Na ⁺)	None
Potassium compounds (K ⁺)	None
Nitrates (NO ₃ ⁻)	None
Perchlorates (CIO ₄ ⁻)	None
Acetates (CH ₃ CO ₂ ⁻)	None
Chlorides (Cl ⁻)	(
Bromides (Br ⁻)	Ag^+ , Hg_2^{2+} , and Pb^{2+} compounds
lodides (I ⁻)	
Sulfates (SO ₄ ²⁻)	Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺ compounds

$$T(K) = t({}^{\circ}C) + 273$$

$$T(K) = t(^{\circ}C) + 273$$

1 atm = 760 mmHg = 760 torr = 101,325 Pa
 $P_1V_1 = P_2V_2$ $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$